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Absorbing Boundary Conditions for the TLM Method

Abstract—The numerical

boundary conditions when

Juan A. Morente, Jorge A.

behavior of different absorbing
applied to the transmission-line. .

modelling method is presented. These conditions may be clas-

sified into three different groups according to the way they are

derived. The first group is obtained by discretizing one-way an-

alytical conditions derived for the analytical wave equation. The
second group is a set of discrete conditions directly obtained
for the discrete wave equation. The last group is based on ap-
propriate reflection coefficients derived purely from transmis-
sion-line theory. Due to its different behavior, the numerical

study is explicitly carried out for both two- and three-dimen-

sional free-space scattering problems.

1. INTRODUCTION

T HE Transmission-Line Modelling (TLM) method has

been successfully applied during the last twenty years

for the solution of electromagnetic-wave-propagation
problems. Details, applications and advantages of the

method are readily available in the literature [1]-[5].

Since its formulation in 1971 by Johns [1], many of the

problems studied using the TLM method have been con-

cerned with waveguide devices due to its simplicity to

implement electric and magnetic walls. In order to study

free-space problems, absorbing boundary conditions have

to be established to avoid non-physical reflections. Al-

though the method has been used to solve a number of

free-space problems [6], little has been said about the

truncation conditions ~~It was not until the late 80’s that

absorbing boundaqi conditions applied to the TLM

method appeared explicitly in the literature [7] –[8]. These

conditions are based on the definition of appropriate re-

flection coefficients derived purely by means of transmis-

sion-line considerations and so will be termed match-ter-

mination conditions.

Two other types of absorbing boundary conditions are

considered in this paper. The first type, which we will

refer to as family of one-way equations, is based on dis-

crete approximations of analytical conditions for the an-

alytical wave equation. These conditions have been suc-

cessfully applied to the finite-difference method, whose

equivalence with the TLM method under certain circum-

stances has been well established [9]. Since the second

group of conditions is directly concerned with finding dis-

crete boundary conditions for the discretized wave equa-

tion, they will therefore be labelled discrete boundary

conditions.
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Most of the previous analytical and numerical works on

truncation conditions assume that results for the wave

equation of order n are extrapolable for different values

of n, so the study is usually limited to two-dimensional

problems. A surprising example of how Huyghens’ lprin-

ciple only holds for odd values of n is presented in [10].

This, added to the fact that numerical treatment may pro-

duce unstabilities that can differ depending on the value

of n, justifies the need of an explicit and separate study

of two- and three-dimensional scattering problems.

II. ABSORBING BOUNDARY CONDITIONS

This section presents discrete approximaticsns of the ab-

sorbing boundary conditions for a plane wave trave [ling

in the –X direction (boundary x = O). In the following

equations, Un (i, 1, m) stands for the scattered voltage

pulses at spatial point (i Ax, 1 Ay, m Az) and time ~~6t.

That is to say, the pulses calculated in the absence of the

scatterer have been subtracted prior to applying the con-

ditions, for they correspond to the incident fields ancl are

treated separately using symmetry considerations.

Considering the way they are derived, we classify the

boundary conditions ifito the following three groups:

1) One-Way Equations: These are analytical boundary

conditions for the analytical wave equation. A deta~iled

description is available in [1 1]. The condition, in its dis-

crete form, is

u ‘+’(0, 1,1’n) =P+ A,–~A2
po+l

where

Al = Un+’(l, l,m) – Un-’(l, l,m) + Un-’(O, l,m)

A2 = U“+’(l, l,m) – 2 U’(1, 1, m) – 2 Un(O, l,m)

+ U“-l(l, l,m) + U“-l(O, l,m)

As = U“(1, 1 + 1, m) – 2 Un(l, l,m)

+ Un(l, J – l,m) + U“(O, 1 + l,m)

– 2 U“(09 1, m) + U’(O, 1 – 1, m)

AA = U’(1, l,m + 1) – 2 U“(l, l,m)

+ Un(l, l,m – 1) + U“(O, l,m + 1)

– 2 U“(O, l,m) + U“(O, 1, m – 1) (2)
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For two-dimensional problems the term AA in (1) and

(2) vanishes.

Numerical results will be presented for the Pad& ap-

proximant, p. = 1 and p2 = –0.5, corresponding to the

second-order condition proposed by Engquist and Majda

in [12]. The case p. = 1 and pz = O, obtained by deriving

with respect to time a first-order condition, is also pre-

sented.

2) Discrete Boundary Conditions: They are a set of

discrete boundary conditions (first and second order) di-

rectly derived for the discrete form of the wave equation

[13].

2.1) Space-time extrapolation.

I!I’*+ ’(O, l,m) = U“(l, l,m)

U’+’(O, l,m) = 2 Un(l, 1, m) – U ‘- *(2, 1, m) (3)

2.2) Averaging method.

U“+’ (O, 1, m)

= \ {U”+’ (l. l,rn) + U“(O, 1, m) + U“(l, l,m)}

U“+ ‘(O, 1, m)

= ${6 U’l+l(l. l,m) - U“+’(2, I,m)

+ 6 U“(O, 1, rn) + 4 U“(l, 1, m)

– 2U’1(2,1, m) – Un-l(O, l,m)

– 2U’1-l(l, l,?n) – U“-1(2, l, m)] (4)

3) Match Termination of the Mesh: This group, ex-

pressly derived for the TLM method, is based on the def-

inition of appropriate reflection and transmission coeffi-

cients obtained using transmission-line theory [7]-[8].

The general form of this coefficient appears in [7]. For

the case of symmetrical condensed node with identical di-

mensions in all directions and no series or shunt stubs,

the reflection coefficient becomes zero and, thus, the ab-

sorbing condition is

U“+l(O, 1, m) = O (5)

Third and higher-order conditions can be found for both

one-way equation and discrete boundary conditions.

However, they are not included in this paper because they

have been shown to produce instabilities due to low-fre-

quency modes, as predicted by Hidgon in [13].

III. NUMERICAL RESULTS

A. Two-Dimensional Problem

The geometry depicted in Fig. 1 is used to test the per-

formances of the different two-dimensional absorbing

boundary conditions. A gaussian pulse defined by

E: = E. e ‘gz(f - flrn..): (6)

with EO = 1 V/m, g = 3 ns-i and tmax = 0.715 ns, trav-

eling in the +x direction, illuminates an infinitely-long

square cylinder of side 10 A, with A = 0.05 m and 6 =

A/c = 0,17 ns. The space domain D, has been modelled

by means of a square mesh of side 40 A and a reference

solution is obtained by solving the problem for an ex-
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Fig. 1. Geometry of the two-dimensional problem

tended domain D, of side 100 A. The output signal chosen

is E: in the shadow region (mesh point (59,50) in the fig-

ure), where the response takes relatively small values, in

order to better discriminate slight differences due to non-

physical reflections. The performance of the conditions

will be quantitatively stated by evaluating the following

error parameter

Erred =
d

S (OUT: – OUT;)* (7)
~=1

where OUT: and OUT; are the output signals at time step

r and evaluated for the reduced and extended domains,

respectively.

With the mesh geometry described above, exact values

of the reference solution are expected until time step 160

approximately, where reflection from point A in the figure

arrives at the output point. Non-physical reflections orig-

inating at points B and C are expected at later times of

about 2305 and 2908. Reflections from point A are shown

to be almost negligible for the reference solution and we

will consider as valid values of the error parameter for

times below time step 230.

Fig. 2 compares the absorbing boundary conditions

presented above. Similar behavior is observed for the sec-

ond-order Pad6 approximant and match termination but

substantial reduction of reflections is achieved using dis-

crete boundary conditions. The same reduction is ob-
served for the one-way condition with p. = 1 and pz = O
(one-way 1 in the figure) that corresponds to a first-order

condition when derived with respect to time. It may also

be observed that better performance is achieved for sec-

ond-order conditions than for first-order ones. It has been

found that less error-parameter values are initially ob-

tained for third-order conditions but, as mentioned above,

low frequencies cause instabilities to appear at later times.

Fig. 3 illustrates the reference output field, the solution

obtained for the second-order space-time extrapolation,

and the solution for the match-termination conditions for

comparison. Fig. 4 shows the output field evaluated for
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Fig. 2. Comparison of absorbing boundary conditions for the two-dimen-
sional problem.
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Fig. 3. Electric field at the output point of Fig. 1 for the reference solution

and two absorbing boundary conditions.

the extended domain D, using match-termination condi-

tions. It is evident from these figures that match termi-

nation is not capable of efficiently absorbing outgoing

waves, producing instead non-physical reflections that,

according to the time they appear, have their origin at

points A, B or C of Fig. 1. For second-order pad~ ap-

proximation of one-way conditions, reflection from point

O,OB-
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Fig. 4. Electric field at the output point of Fig. 1 for the match-termination.
condition usin’g the extende~ domam D,.

B in the figure does not appear because this approximant

produces exact absorption for normal incidence.

B. ZJtree Dimensional Problem

A similar geometry is used to test boundary conditions

in three-dimensional problems except that the gaussian

pulse incides upon a cube of side 10 A. The problem is

solved m a reduced domain D, of dimensions 40 A x

40 A X 40 A. An extended domain D,, 100 A X 100 A
x 100 A, is used to obtain a reference solution and pa-

rameter (’7) is applied to the solutions in D,. The output

point is again at the rear part of the scatterer in order to

obtain low-field values to better appreciate slight differ-

ences. Non-physical reflections from points A, B, and C

are again expected at time steps 160, 230 and 290 res pec-

tively.

The first fact to point out is that second- and third-order

conditions, although they initially yield better results Ithan

first-order ones, cause instabilities to appear. It should be

noted that these instabilities are due only to the absorbing

boundary conditions, since the way in which TLM is for-

mulated ensures its stability [5]. The only second-order

condition that produces almost satisfactory results is the

Pad6 approximation of one-way equations. This is in clear

contrast with two-dimensional problems in which this type

of condition gave the poorest results.
Fig. 5 is a plot of the error parameter versus time for

the stable conditions that have been found. Also included

is the solution for the second-order space-time extrapo-

lation because it is the best two-dimensional condition.

Differences between the reference solution ‘and stable so-

lutions in the interior domain are presented in Fig. 6. No
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Fig. 6. Electric field at the output point for the reference solution and two

absorbing boundary conditions.

stable solution has been found for first-order space-time

extrapolation conditions although extrapolation of its sec-

ond-order behavior in two-dimensional problems seemed

to suggest the opposite.

IV. CONCLUSIONS

This paper is concerned with the study of absorbing

boundary conditions to solve free-space electromagnetic

problems using the transmission-line method. Currently,

conditions applied to TLM are usually based on reflection

coefficients. Two other groups are also included in this

paper: one-way conditions for the analytical wave equa-

tion and discrete conditions for the discrete wave equa-

tion. The need for an explicit study for two and three di-

mensions has also been established for both analytical and

numerical reasons.

For the two-dimensional case, the response of an

infinitely-long square cylinder when illuminated by a

gaussian pulse has been studied and compared to a refer-

ence solution (obtained for a larger domain), by defin-

ing an appropriate error parameter. Match termination

of the lines are clearly surpassed by discrete boundary

conditions. In particular, second-order space-time ex-

trapolation conditions yield the best results without being

significantly difficult. One-way equations, although

successfully applied for FD-TD calculations, yield stable

but very poor results.

Results obtained for two-dimensional cases are not ex-

trapolable to three-dimensional geometries as indicated

above. For this case, the response of a cube to a gaussian

pulse is studied. Space-time extrapolation techniques do

not produce stable conditions in spite of the very good

performances exhibited for the two-dimensional case. On

the contrary, the best results are those obtained when us-

ing first-order averaging conditions. It is a remarkable fact

that Pad6 approximation of one-way equations produces

relatively good results in contrast to the poor results ob-

tained for two dimensions.
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