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Absorbing Boundary Conditions for the TLM Method

Juan A. Morente, Jorge A. Porti, and Mohsine Khalladi

Abstract—The numerical behavior of different absorbing
boundary conditions when applied to the transmission-line
modelling method is presented. These conditions may be clas-
sified into three different groups according to the way they are
derived. The first group is obtained by discretizing one-way an-
alytical conditions derived for the analytical wave equation. The
second group is a set of discrete conditions directly obtained
for the discrete wave equation. The last group is based on ap-
propriate reflection coefficients derived purely from transmis-
sion-line theory. Due to its different behavior, the numerical
study is explicitly carried out for both two- and three-dimen-
sional free-space scattering problems.

I. INTRODUCTION

HE Transmission-Line Modelling (TLM) method has

been successfully applied during the last twenty years
for the solution of electromagnetic-wave-propagation
problems. Details, applications and advantages of the
method are readily available in the literature [1]-[5].

Since its formulation in 1971 by Johns [1], many of the
problems studied using the TLM method have been con-
cerned with waveguide devices due to its simplicity to
implement electric and magnetic walls. In order to study
free-space problems, absorbing boundary conditions have
to be established to avoid non-physical reflections. Al-
though the method has been used to solve a number of
free-space problems [6], little has been said about the
truncation conditions. It was not until the late 80’s that
absorbing boundary conditions applied to the TLM
method appeared explicitly in the literature [7]-[8]. These
conditions are based on the definition of appropriate re-
flection coefficients derived purely by means of transmis-
sion-line considerations and so will be termed match-ter-
mination conditions.

Two other types of absorbing boundary conditions are
considered in this paper. The first type, which we will
refer to as family of one-way equations, is based on dis-
crete approximations of analytical conditions for the an-
alytical wave equation. These conditions have been suc-
cessfully applied to the finite-difference method, whose
equivalence with the TLM method under certain circum-
stances has been well established [9]. Since the second
group of conditions is directly concerned with finding dis-
crete boundary conditions for the discretized wave equa-
tion, they will therefore be labelled discrete boundary
conditions.
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Most of the previous analytical and numerical works on
truncation conditions assume that results for the wave
equation of order n are extrapolable for different values
of n, so the study is usually limited to two-dimensional
problems. A surprising example of how Huyghens’ prin-
ciple only holds for odd values of »n is presented in [10].
This, added to the fact that numerical treatment may pro-
duce unstabilities that can differ depending on the value
of n, justifies the need of an explicit and separate study
of two- and three-dimensional scattering problems.

II. ABSORBING BoUNDARY CONDITIONS

This section presents discrete approximations of the ab-
sorbing boundary conditions for a plane wave travelling
in the —x direction (boundary x = 0). In the following
equations, U"(i, I, m) stands for the scattered voltage
pulses at spatial point (i Ax, [ Ay, m Az) and time n 6t.
That is to say, the pulses calculated in the absence of the
scatterer have been subtracted prior to applying the con-
ditions, for they correspond to the incident fields and are
treated separately using symmetry considerations.

Considering the way they are derived, we classify the
boundary conditions into the following three groups:

1) One-Way Equations: These are analytical boundary
conditions for the analytical wave equation. A detailed
description is available in [11]. The condition, in its dis-
crete form, is

n+1 1 — __ Po
U (0’ s m) Po + 1 1 Po + 1 2
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For two-dimensional problems the term A, in (1) and
(2) vanishes.

Numerical results will be presented for the Padé ap-
proximant, py = 1 and p, = —0.5, corresponding to the
second-order condition proposed by Engquist and Majda
in [12]. The case py = 1 and p, = 0, obtained by deriving
with respect to time a first-order condition, is also pre-
sented.

2) Discrete Boundary Conditions: They are a set of
discrete boundary conditions (first and second order) di-
rectly derived for the discrete form of the wave equation
[13].

2.1) Space-time extrapolation.

U, 1, m) = U"(, I, m)

Ui, Lmy =201, Lm - U 'R, Lm) (3)
2.2) Averaging method.

U0, 1, m
=3 {U" A, Lm) + U0, I, m) + U"(1, I, m)}
Un+l(0, l, m)
= % {6 U"+1(1. l, m) _ Un+1(27 l, m)
+6U™0, 1L, m+4U"1,! m
—2U0"2,I,m)y — U0, I, m)

20" ', L,m) - U2, 1, m)} (4)
3) Match Termination of the Mesh: This group, ex-
pressly derived for the TLM method, is based on the def-
inition of appropriate reflection and transmission coeffi-
cients obtained using transmission-line theory [7]-[8].
The general form of this coefficient appears in [7]. For
the case of symmetrical condensed node with identical di-
mensions in all directions and no series or shunt stubs,
the reflection coefficient becomes zero and, thus, the ab-
sorbing condition is

U0, 1, m =0 (5)

Third and higher-order conditions can be found for both
one-way equation and discrete boundary conditions.
However, they are not included in this paper because they
have been shown to produce unstabilities due to low-fre-
quency modes, as predicted by Hidgon in [13].

III. NuMmericaL RESULTS
A. Two-Dimensional Problem

The geometry depicted in Fig. 1 is used to test the per-
formances of the different two-dimensional absorbing
boundary conditions. A gaussian pulse defined by

E: — Eoe—g2(t—ltmm()2 (6)

with Eg = 1 V/m, g = 3ns™" and ¢,,,, = 0.715 ns, trav-
elling in the +x direction, illuminates an infinitely-long
square cylinder of side 10 A, with A = 0.05 mand 6 =
A/c = 0.17 ns. The space domain D, has been modelled
by means of a square mesh of side 40 A and a reference
solution is obtained by solving the problem for an ex-
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Fig. 1. Geomeiry of the two-dimensional problem.

" tended domain D, of side 100 A. The output signal chosen
~ is E_ in the shadow region (mesh point (59,50) in the fig-

ure), where the response takes relatively small values, in
order to better discriminate slight differences due to non-
physical reflections. The performance of the conditions
will be quantitatively stated by evaluating the following
erTor parameter

1mn
Error" = \/ Zl (OUT} — OUT)? (7
-
where OUT; and OUT,, are the output signals at time step
r and evaluated for the reduced and extended domains,
respectively.

With the mesh geometry described above, exact values
of the reference solution are expected until time step 160
approximately, where reflection from point A in the figure
arrives at the output point. Non-physical reflections orig-
inating at points B and C are expected at later times of
about 230 6 and 290 6. Reflections from point A are shown
to be almost negligible for the reference solution and we
will consider as valid values of the error parameter for
times below time step 230.

Fig. 2 compares the absorbing boundary conditions
presented above. Similar behavior is observed for the sec-
ond-order Padé approximant and match termination but
substantial reduction of reflections is achieved using dis-
crete boundary conditions. The same reduction is ob-
served for the one-way condition with p, = 1 and p, = 0
(one-way 1 in the figure) that corresponds to a first-order
condition when derived with respect to time. It may also
be observed that better performance is achieved for sec-
ond-order conditions than for first-order ones. It has been
found that less error-parameter values are initially ob-
tained for third-order conditions but, as mentioned above,
low frequencies cause unstabilities to appear at later times.

Fig. 3 illustrates the reference output field, the solution
obtained for the second-order space-time extrapolation,
and the solution for the match-termination conditions for
comparison. Fig. 4 shows the output field evaluated for
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Fig. 2. Comparison of absorbing boundary conditions for the two-dimen-
sional problem.
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Fig. 3. Electric field at the output point of Fig. 1 for the reference solution
and two absorbing boundary conditions.

the extended domain D, using match-termination condi-
tions. It is evident from these figures that match termi-
nation is not capable of efficiently absorbing outgoing
waves, producing instead non-physical reflections that,
according to the time they appear, have their origin at
points A, B or C of Fig. 1. For second-order Padé¢ ap-
proximation of one-way conditions, reflection from point
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Fig. 4. Electric field at the output point of Fig. 1 for the match-termination
condition using the extended domain D,.

B in the figure does not appear because this approximant
produces exact absorption for normal incidence.

B. Three Dimensional Problem

A similar geometry is used to test boundary conditions
in three-dimensional problems except that the gaussian
pulse incides upon a cube of side 10 A. The problem is
solved in a reduced domain D, of dimensions 40 A X
40 A X 40 A. An extended domain D,, 100 A X 100 A
X 100 A, is used to obtain a reference solution and pa-
rameter (7) is applied to the solutions in D,. The output
point is again at the rear part of the scatterer in order to
obtain low-field values to better appreciate slight differ-
ences. Non-physical reflections from points A, B, and C
are again expected at time steps 160, 230 and 290 respec-
tively.

The first fact to point out is that second- and third-order
conditions, although they initially yield better results than
first-order ones, cause unstabilities to appear. It should be
noted that these unstabilities are due only to the absorbing
boundary conditions, since the way in which TLM is for-
mulated ensures its stability [5]. The only second-order
condition that produces almost satisfactory results is the
Padé approximation of one-way equations. This is in clear
contrast with two-dimensional problems in which this type
of condition gave the poorest results.

Fig. 5 is a plot of the error parameter versus time for
the stable conditions that have been found. Also included
is the solution for the second-order space-time extrapo-
lation because it is the best two-dimensional condition.
Differences between the reference solution and stable so-
lutions in the interior domain are presented in Fig. 6. No
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Fig. 5. Comparison of absorbing boundary conditions for the three-dimen-
sional problem.
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Fig. 6. Electric field at the output point for the reference solution and two
absorbing boundary conditions.

stable solution has been found for first-order space-time
extrapolation conditions although extrapolation of its sec-
ond-order behavior in two-dimensional problems seemed
to suggest the opposite.

IV. CONCLUSIONS

This paper is concerned with the study of absorbing
boundary conditions to solve free-space electromagnetic
problems using the transmission-line method. Currently,
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conditions applied to TLM are usually based on reflection
coefficients. Two other groups are also included in this
paper: one-way conditions for the analytical wave equa-
tion and discrete conditions for the discrete wave equa-
tion. The need for an explicit study for two and three di-
mensions has also been established for both analytical and
numerical reasons.

For the two-dimensional case, the response of an
infinitely-long square cylinder when illuminated by a
gaussian pulse has been studied and compared to a refer-
ence solution (obtained for a larger domain), by defin-
ing an appropriate error parameter. Match termination
of the lines are clearly surpassed by discrete boundary
conditions. In particular, second-order space-time ex-
trapolation conditions yield the best results without being
significantly difficult. One-way equations, although
successfully applied for FD-TD calculations, yield stable
but very poor results.

Results obtained for two-dimensional cases are not ex-
trapolable to three-dimensional geometries as indicated
above. For this case, the response of a cube to a gaussian
pulse is studied. Space-time extrapolation techniques do
not produce stable conditions in spite of the very good
performances exhibited for the two-dimensional case. On
the contrary, the best results are those obtained when us-
ing first-order averaging conditions. It is a remarkable fact
that Padé approximation of one-way equations produces
relatively good results in contrast to the poor results ob-
tained for two dimensions.
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